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Results of the calculations are presented in Fig. 2. Membrane deflections at the sec- 
tion 5 = 0.5 are shown for a = 0,04 and ,Z = 0.07 by curves 1 and 2 , respectively. 

The value of the functional at a = 0.07 turned out to be J = - 0.0151. The results 
obtained are in good agreement with the results in IS], where the solution of an analog- 
ous problem was performed by the method of local variations. 

In conclusion, let us note that dynamic programing can be applied to solve such a 
class of two-dimensional problems even for restrictions of more general type on the 
deformation. 
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The problem of splitting an infinite elastic wedge with a thin perfectly rigid smooth 
plate is considered. The plate is driven in along the bisectrix of the wedge angle and a 

slot forms in front of it, when a < r < b . The wedge faces are either free or hinged. 
Formulas defining the form of the slot surface and the normal stress intensity coeffi- 

cient are obtained. Effective asymptotic methods developed in [I] as well as the math- 
ematical apparatus of the Wiener-Hopf method r23 are employed in the course of solu- 

tion. 
1, Statsment of the problem, Solution of the problem by appro- 

xlmotlng the function L. Let a thin perfectly rigid smooth plate of constant 
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thickness 2 h be driven into an elastic isotropic wedge bounded by the rays 0 = f a 
(0 < r < 00) along its bisectrix(see Fig.). In front of the plate , a slot is formed occu- 

@_o pying the region {O = 0, a < r ( b). Wedge faces are 
either hinged (1) or stress-free (2). The boundary con- 

ditions of the problem have the form for O = 0 

Ua=*h(O<r<a), us=:0 (b<;r<m) 

aa=0 (a<r<b), z,s=O (O<r<=0) (1. 1) 

for e = * a(~ g T < oo) 

Fig, 1 
(1) Tc,@ = UB = 0, (2) ar,=oe=O 

and the stresses vanish at infinity. 

The plus and minus signs correspond to the upper and lower boundary of the slot, 
Our aim is to determine the form of the slot surface u(r) and the normal stress inten- 

sity coefficient N the stresses appearing outside the slot on a line extended from it (for 

B = O and r > b). Obviously, by virtue of the symmetry we need only consider the region 
contained between the rays 0 = 0 and 0 -- a (0 < r < CX). 

Using a solution of the Lame equations for the plane problem of the theory of elasti- 

city in the form of Mellin integrals [l] and the boundary conditions (1. l), we can reduce 

the present problem to that of finding an unknown function U(T) E ua(r,O) (B < r <b) 
from the following integral equation : 

j r’(P)Q(In Fjdp=O (a<r<&), Q(f)= fU u, a) sin(ut)du (1.2) 
LI 0 

We have the following expressions for the function L(u, a) for conditions (1) and (a), 
respectively 

sh 2uu + u sin 2u sh2 UE - uz sin2 ‘31 
(1) L(u, Co= ch 2uz - cos 2a ’ (‘1 L(“* ‘I=’ sh&a+usinZz 

We note the following properties of L(u, a): 

L(u, a)-bl + O(e-2ua) for U -+ ~0; L(u, a) + e%tu + O(G) for u -F 0 

The following are the expressions for the constant c for conditions (1) and (P), respec- 
tively : 

(1) 
1-cos2u 

C=“-2ct+sin2a (1 # JCL 
2r + sin 2a 

(2) &= *2y,2__2sinz~ (1.3) 

We shall use the expression th (c-1 nu) where c is given by (1.3), as an approximation 

to the function L(u, a). Similar approximation was used in [S], while [4] gives the rela- 
tive accuracy of this approximation for various vatues of the angle a . Taking this appro- 
ximation into account we find from (1.2). 

(1.4) 

Performing the change of variable in the second expression of (I.. 4) according to the 
formulas 5 = 0~ and x = rC, we obtain a singular integral equation whose inversion for- 

mula is known [5]. Applying this formula and returning to the former variables, we obtain 

(f-5) 

where P is a constant to be determined, From (1.5) we obtain 
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P 

v (r) = h + 
c 

2P 
U’ (p) dp = h + 

ncJfbC 
F iarc sin 17 , kj (1.6) 

x 

k==T/i-eC , e=a/b 

where F(8, k) is an elliptic integral of the first kind. 
Constant P can be found from the obvious condition 

v(b) = 0 (2.7) 

From (1.6) and (1.7) we obtain after simple manipulations 

pz c_ 0.5nhc J,%@(k) (i.6) 

where R(k) denotes a complete elliptic integral of the first kind. The normal stress inten- 
sity coefficient N, the stresses appearing outside the slot on the line extended from it, is 

given by 
lim 

r-b-0 
(1.9) 

where E denotes the Young’s modulus and v is the Poisson’s ratio. 

Inserting into the second relation of (1.9) u’(r) in the form given by (1.5) and taking 

(1. 8) into account, we obtain 
N= 

Eh jf/c 

4 (1 -9) kR (k) JfF 
(1.10) 

It can be shown that the solution (1.6),(1.10) tends to the exact solution of the prob- 
lem as e -+ 0 and e - 1 , for all 0 < a < n. . Let e.g. the length of the slot 1 = b - a 

be fixed and e + i_ The relative length of the plate will then tend to infinity and the 
effect of the wedge face OR N can, therefore, be neglected. The corresponding problem 

will be that of splitting a plane with a semi-infinite piate. when a slot of length t forms 
in front of the plate. In this case we obtain from(l.10) 

lim N= 
Eh I/i-’ 

2(1- v”) n l/r 
(1.21) 

e-1 

The value of N obtained above agrees with that obtained in [6] in the course of inves- 

tigation of splitting a plane with a semi-infinite plate. 
Numerical computations show that the obtained relations (1.6) and (1.10) defining 

the function u(r) and the magnitude of N, respectively, can safely be used for any values 

of e, when 65O < a Q i55* for condition (1) at the wedge edges and when 85’~ a Q 180” 
for condition (2). The solution will become exact in two cases: when condition (1) holds 
and a = 1/S zt , and when condition (Z) holds and a = zt, In the first case c = 2, in the 

second case c = 1. The first case corresponds to the problem of splitting a semiplane 
whose boundary is hinged to a plate which is imbedded in it to the distance a. Boundary 
conditions (1. I) indicate. that it also corresponds to the problem of splitting a plane with 
a plate of length 2a, when slots of length 1 are formed on both sides of this plate. The 

solution obtained for this case agrees with that given in [7]. The second case corresponds 
to the problem of splitting a plane with a plate of length a. A slot of length 2 forms 
here on one side of the plate, while a rectilinear semi-infinite cut is formed on the 
other side. 

2, Solution of the problem for #mall P. Using the method developed 
in [l] we shall seek an asymptotic solution of (1.2) valid for small values of e, in the 
form u’(r)” = zJ&)u&r) &J-l(r) (a d r 6 b) (2.i) 

We find the functions Q(T) and u&f from the following integral equations: 
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(0 < r < b) (aCSr<m) 
The function us(r) represents the null term of the asymptotics r+(r) when r / a + 30. 

Simple transformation of variables reduces Eqs, (2.2) to a single Wiener-Hopf equation 

q(r) Q(z--t)ch=O (O<t< =f (2.3) 

and we also have 
0 

“(p)+(ln$ , 
1 

n(p)= $1p In $ 
( ) 

(2.4) 

Let us extend Eq. (2.3) to the whole interval - 00 < t < =, by introducing a new 
~known function c2] . M 

w_(t)=+- c $ (r) Q (t - t) A (---<<to) (2.5) 

z 
Applying the Fourier transform to (2,3) and (2.5) we obtain 

y+ (a)-&, ej = w_ (s) (2.8) 

where Y+ (sj and W_ (s) are Fourier transforms of the functions q(t) and w_(t) , respec- 

tively. 
To obtain a usable solution, we shall employ the following expression to approximate 

the function L -m 
L (s, t() = 

s I/sa + Da 
I-I 

sr? f A,2 

i 
(2.7) 

sz 3-P n_l a2 i- 8,’ 

Here L), A, and B, are real positive numbers chosen from the condition of the best 

approximation. Taking into account (2.7). we can write (2.6) in the form 

sY+(s) y-qa- m II s + iA, = ‘I+‘_ (s)(s - iR) 
s+iR 

n=1 
s +iB, 

Both parts of (2.8) coincide with some function G(s) regular on the whole complex 

s -plane, in the general band of regularity l&(0 < lms < lnf (_R, D, A,, B,J . 
Since *(t) - t-l” for t -+ t-0, Y+ (s) N s-‘/z for s --* oi7 in the upper semiplane. 

Consequently the left side of (2. S) assumes a constant value as s + 00 . Similarly, we 
can show that the right side of (2.8) also becomes constant in the lower semiplane as 

s -_, 00. Therefore, by the Liouville’s theorem G(s) = A, = const and we have 

y+(s)= A* (2.9) 

In the following we shall only consider the case B, = A,(n = l,...m). In this case 

from (2.9) we obtain ,-LX 
$ (t) = - n 

I/c 
-$-zz$ + Fzerf A=.-- I/z;t 

i’i A*) (2.10) 

Having found the functions z+(r), v&f and Q(T) from (1.10) and (2.4) and using the 
relation (2. X), we obtain 

v’ (r) = - 

x [-$$($+ln$” ferf (Dln;j"*] (a\(r<b) (2.il) 
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Inserting now u’(r) into the left part of (1.6), we find 

(a==--Dine) 

The constant A is obtained (after the necessary computations) from the condition (1.7) 

(2.13) 

Approximate values of the integrals Jf fb) (i = i,2) whose relative error does not 
exceed 0.1% for w = 2.5 , are obtained from the following expressions: 

(The above expressions tend to exact values of J%(b) with increasing 0). 
It can easily be confirmed that 

Jl (r/q =; Jl (b) - - [erf (i/2 d2Y)Iz, 2;; Jz (J&b) = + fn (b) 

Taking into account (2.13) and (2.14), we obtain from (2.12) 

U(v’;;i; = ‘I& 

(2.14) 

Relation (Z. 11) and the second relation of (1.9) yield the normal stress intensity coef- 
ficient N 

iv= (2.15) 

The accuracy of the expressions (2.U) and (2.15) just obtained, increases with decreas- 
ing e. Let us determine the value of N for e < 1. Inserting the value of the constant A 

into (2.15), we find Eh 
Iirn NIne=- 
E-M 2 l/a (1 - Y”) 

Consequently, when e 4 1 , we have 

N=- 
Ek 

2I/G(l--v2) lne 

The above value for N can also be obtained from (1.10). 

8. Solution of the problsm for large b. Performing a change of varia- 
bles 

1-f-s If5 
r = a exp --jy--- , p=aexp- h ( 

in (1.2), we obtain the following integral equation with a difference kernel dependent 
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on the parameter & I 

1 cp ,C,Q(~)4=0 ~~(~)=P~‘(P)) (3.1) 

When a are large, theiernel of (3.1) can be represented by 

Q(r)=;+; pi@ 
i=o 

(3.2) 

Constants @, are given by 

P,= 
(-l)i O3 

(2i + l)! s 
IL@, a)- ii r.4 2i +1 du (i = 0, 1, * . .) 

0 

Values of pi are given in [8] for certain particular cases. Taking into account (3.2). 

we can transform Eq. (3.1) into 

(3.3) 

We shall seek the solution of (3.3) in the form of a series in powers of h-s. We omit 

the intermediate operations similar to those in [l and 87, and give the final expression 

defining the function v(z) cpfz) = x-‘(1 - zz)-“T@(z) (3.4) 

@(x) = ifF-- r/&J&* + (ZC + z’d - ‘/*)#&‘ i- [(Yaz’ - ~/I~)~~~ + P + 

+ a/@’ - a/(x” - ‘B/s bF.-* + 0P) 

Returning now to the former notation and variables, we find 

(3.5) 

The 1eFt part of (1.6) and the condition of boundedness of the function v(r) (1.7) yield 
u(r) and the constant 2’ 

T=--hh (3.6) 

Inserting now U’(T) in the form given by (3.5) into the second relation of (1.9) and 
taking into account the value of T just obtained, we find 

N= Eh )/Km(i) 
2n l/B(i -v2) 

(3.7) 

which, on taking h to infinity, gives a value for N agreeing with that obtained in Sect. 1 

in the form of (1.11). 

It can be shown that the series (3.2) converges absolutely when t < 2~2. Consequently, 

results obtained in this section are valid for 1 / a < h c 30. In practice, the relations 

(3.6) and (3.7) become usable when 2 / a < h < m. 
Numerical results obtained in Sects.2 and 3 for the determination of v(r) and N cover 

the whole range of variation of the parameter 0 g h < CO, thus representing a complete 

solution of the problem. The simpler solution (1.6),(1.10) can be used for all h when 
either 65* ;5 a < 155’ and conditions (1). or 65O Q a < 180a and conditions (2) hold at 
the wedge faces. 

Values of the quantities N, = (1 4 v*) vbTEh)-l N and us = h%( I/s) computed 
according to the formulas given in Sects. 1, 2 and 3 for A = 2, a = %n and conditions 

(2) at the wedge faces are, respectively, N, = 0.151, 0.152, 0.151 and ~,=0.500.0.500, 

0.500. 
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Values of the constants used in the present case, are: 

PO = - %, 01 = I1 /pQ, p* = - ~3@/~~*~, D = 2.549, A, = 3, (n =1,..., m). 

The error of the approximation (2.7) does not exceed 3X for all 0 < Res < O. . 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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1. Solution of certain classes of the boundary value problems of mathematical phy- 
sics for a two-layer medium demands that the given function be expanded into an inte- 

gral in terms of the functions 

p sin V_Ehx 
(0 < x < 1) 

cp (2, h) = 
sin v&&l cos 1/E& (z - I) + B cos r/ii; hl sin vE& (z - 1) (l < a < XJ) 

(1.1) 

which are eigenfunctions of the following singular boundary value problem : 

cp” + fwP = 0 (0 < 2 < 1), cp” + IQ% = 0 (1 < 5 < =) (1.2) 

Pa = 0, cp(=) < w* w -0) - pql(l + O), qf(i - 0) = Y’p’(l + 0) 

The fundamental result of the present investigation can be stated in the form of the 

following theorem : if f (5) is a piece-wise continuous function absolutely integrable on 
the interval (0, X) and possessing a bounded variation in this interval, then 


